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I[. INTRODUCTION

In a previous paper [1], the longitudinal motion of a particle under periodic ground
motion perturbation was studied with the assumption of no spread in the synchrotron
frequency. It was shown that the rf phase mismatch due to sinusoidal ground-wave
kick on the quadrupoles does not add up so as to throw the particle outside the rf
bucket, except in the unlikely event that the discrete driving frequency of the pertur-
bation is locked on exactly at the synchrotron frequency. The rf force is nonlinear,
which reduces the synchrotron frequency to zero at the boundary of the rf bucket. As
a result, the response due to a perturbation of any frequency will not kick the particle
into resonance. However, the nonlinear rf force does introduce resonances of another
sort: the existence of islands in the longitudinal phase space. The motion of beam
particles inside these islands will lead to an increase in the longitudinal emittance of

the particle bunch.



II. EQUATIONS OF MOTION

Consider a beam particle in an accelerator ring with its orbit subject to a hori-
zontal bend 6(t) = 8 sin wmt, where wy, /2 is the driving frequency. This sinusoidal
bend can arise from the horizontal ground-motion wave pounding on the quadrupoles,
or the power ripple of a current bus on the dipoles. If the lattice has a dispersion
D at the point of perturbation, the length of the closed orbit C' will lexperience a

fluctuation [1]
AC = DI(t) . (2.1)

The rf phase offset ¢ and energy offset é of the beam particle at the (n 4+ 1)th turn

are given by

2rhin AC
Prntt = Pn + %&1 + E?Th—é—- s

eV .
b1 =6, F 5 SN Pn1 (2.2)
where h is the rf harmonic, 1 is the phase-slip parameter, F and §c are the energy
and velocity of the synchronous particle, and ¢ is the velocity of light. The particle

is assumed in a stationary bucket with rf voltage V. The upper (lower) signs apply

when the energy of the particle is above (below) transition. Since the synchrotron

_ {lnlheV
Vsp = 21{'[82E (2'3)

is usually much less than unity, the discrete equations of motion can be approximated

tune at zero amplitude

by differential equations:



de
do

dé
dé

= pabd + avgpsin v,

= —yysing , (2.4)

‘ eV 3?2

so that the two equations appear to be more symmetric. In the above, the situation

where § has been rescaled

of above transition has been chosen, »,, = wy, /wp is the tune of the perturbation,
and wg/27 is the revolution frequency. The independent variable 6 denotes the az-
imuthal angle around the accelerator ring; it advances by 27 for every turn. We have

introduced a dimensionless parameter

LD
a = (2.6)

V50

to denote the amplitude of the driving perturbation. These equations of motion can

be derived conveniently from the Hamiltonian

H = 31,06 + vs0(l — cosp) + aévsosinv,b . (2.7)



II1. HAMILTONIAN

The unperturbed Hamiltonian (with @ = 0) is exactly that of a pendulum and
can be solved exactly. The ground motion or current ripple can then be treated as a
perturbation.

In the absence of the perturbation, the unperturbed Hamiltonian can be written

as
Hy = -'3'!/3052 + vo(l — cos ) = 20k (3.1)
where
k = sin %cpg , (3.2)

and g is the maximum oscillation amplitude of the pendulum. Define a new variable

z by
sin 3¢ = ksinz (3.3)

where z reaches 7 as the amplitude swings to ¢ = wo.

The action J is defined as
J= 2 j{u (3.4)
T me— {] f
or ¥
where

§ =2kl — k=2sin® £ (3.5)

is obtained from Eq. (3.1).

Since

ot



cos 3o = V1 — k2 sin® z and tcostpdp =kcoszdz (3.6)

we get

2 cos? 2z 8
ﬂ'

vlu-kzsmiz

where K (k) and E(k) are complete elliptical integrals of the first and second kinds.

[E(k) — (1 - K)K(k)] , (3.7)

One of the equations of motion 1s

dyp

5 = Vb = 2k cosz . (3.8)

After rearranging and changing variable from ¢ to z, we obtain

2 dz
Vol =/ e —— 3.9
° 0 V1 —kisin’z (39)
This means that we have
sn(v,of|k) = sinz = k™' sin ‘2,
en(vspflk) = cosz (3.10)

where sn and cn are Jacobian elliptic functions. Then, the transformation becomes

¢ = 2sin~ksn(vb|k)] ,

6 = 2k en(vy0bik) , (3.11)

and the parameter & is given by Eq. (3.2) and is a function of J.

If Eq. (3.9) is integrated from 0 to the maximum amplitude o (or z = 17), we

obtain the pendulum tune v,(J) for finite action J:

s
LTI 2 dz

4 (J) " Jo /1= krsiniz

= K(k) , (3.12)



or

Vs

vlJ) = Ry -

(3.13)

According to the definition of the action J in Eq. (3.4), the angle variable ¢ is given
by

= (J)0 - 5 (3.14)

where the constant —’—;— has been chosen for the sake of convenience. In terms of

action-angle variables, the total Hamiltonian can now be rewritten as
J
H =f v(J)dJ + 2akvsg en(u)k) sin v, 0 | (3.15)
0

where u = (t[J + %) vsof vs(J).

With the aid of the expansion formula

I oo (_l)nqu-i-l/Z

cn(ulk) = R ,,,;D T sin(2n+1)y (3.16)
where the “nome” is defined by
q= e—xx(m)/ﬁ'(m , (3.17)

we can see clearly that the perturbing part of the Hamiltonian is a superposition of

terms containing

cos[(n-{—%)wp + v,.8] (3.18)
withn =10, 1, 2, --- , implying that there are resonances whenever
(2n+1)we(J) = 1 . (3.19)



These resonances are different from those that occur in the transverse phase space.
The island structure rotates with frequency w,, /27 about the center of the longitu-
dinal phase space. In other words, the island structure only reveals itself when the
position of the particle is mapped every perturbation period or [v;!] turns, where
[v71] is the integer closest to v;'. This is also evident from the equations of motion,

because the right sides of Eq. (2.4) become “time” independent in the v'-turn map.



IV. FIRST-ORDER RESONANCE

So far the treatment of the Hamiltonian has been exact. To pursue the problem
further analytically, however, we need to resort to approximation. We can expand in
terms of & which is always less than unity except when the particle is at the boundary

of the bucket. Thus,

L2 E2\ 2 k2?3 E2\*
o= E s (E) wst(E) v (£) o
1y? 1-3\? 1-3.5\¢
f"“")%[”(i) 4 (577) ¥+ (3) kﬁ*"'] = (4.2)
] T 1N AR /1-30\2%¢ /1-3-5\2 kS
M““Ell'(i) -3 7 (77) “5"'"] W

We then obtain from Eq. (3.7),

kz\/g(l_%Jr...)_ (4.4)

and the Hamiltonian now becomes
J)3/2
64

2
H = vy (J—— :1]_6) — avy [(QJ)I"2 siny — (2

sin 3 + - -- ] sin 1,0 , (4.5)
where only the lowest order of v/2J for every harmonic of 1 has been retained.
Although v2J — ;% when & — 1, the Hamiltonian in Eq. (4.5) is in fact an
expansion in k%, as is indicated in the expansions of cn and ¢ in Eqgs. (3.16) and
(4.1). Therefore, the higher-order resonances are only important when the oscillation

amplitude @y becomes large. For this reason, we are going to concentrate on the

first-order resonance here. The relevant parts of the Hamiltonian are:

2
H=vy (J — .l]_ﬁ) - (-L-I‘;—SQ(QJ')W2 cos(¢p — v, 0) . (4.6)



We go to a frame rotating with frequency w,,, /27 through the canonical transformation

whose generating function is

Fa(J, ) = J(¥ — vu0) (4.7)
from which we obtain
J=J and =y —u,b. (4.8)
The new Hamiltonian
il J S cos 1 (4.9)
— =] — — — = cos: .
Vs0 16 2 '

becomes “time” independent. For the sake of convenience, we have defined

T=1--2 (4.10)

Vao
to take care of the driving frequency v, and removed the “hats” from the action-angle

variables. The fixed points are given by

dJ 1

7 — miayso 2Jsinty =0,
dip J a
@ =TT s T e = o

We always choose the convention of ¢ = 0 and allow the phase amplitude ¢ = v2J

to attain negative values. Then the equation for the fixed points becomes
=0. (4.12)

In general, there are 3 real solutions; but there is only one when z is small enough.
The critical point is called the bifurcation point and is given by dz/dg = 0, from

which the bifurcation frequency and amplitude are found to be

10



-3
o= P and gy = (40 (4.13)

To simplify the derivation, we normalize the variables with respect to their bifurcation

values:

BN and . g, (4.14)
Tof Usf

thus scaling away the driving amplitude a, so that the equation for fixed points
P —335+2=0, (4.15)

depends on the vartable & only. When the driving frequency is below bifurcation

(2 > 1), the solutions can be readily written as [2]

5.(3) = —=2"/2sin (% + §) , (4.16)

Ja(2) = — LIPLTE cosh% : (4.17)

where ¢ = tanh™'v/1 — 33,

It is not hard to find by expanding the Hamiltonian
around the fixed points that g, and §, are stable fixed points while g. is an unstable

fixed point. At bifurcation (£ = 1), Eq. (4.15) becomes
G-1*"g+2) =0, (4.18)
implying that §, = —2 while §, and §. merge together to 1.
The locations of the fixed points together with the separatrices in the longitudinal

phase space are shown in Fig. 1 when the perturbing frequency is below and right at

bifurcation.
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V. SEPARATRICES

As shown in Fig. 1{a), the separatrices cut the phase axis at points 1, 2, and
the unstable fixed point ¢. Buuch particles near point 2 will be driven to point 1
and ¢, thus increasing the area of the bunch. It is therefore desired {o evaluate the
amplitudes §; and g;. 220z Since the separatrices pass through the unstable fixed
point, their equations are given by equating the Hamiltonian to its value at point e.

Again, using the convention of ¢ = 0, §; and §; satisfy
6292 — §* — 8§ = 626° — §* — 84, . (5.1)

This is a quartic with only 3 real roots; therefore . must be a double root. Since the

unstable fixed point §, satisfies
@ -39 4+2=0, (5.2)

we can eliminate &. Then it is simple to factor out (§—g.)?, leaving behind a quadratic

" . 4
&+ 259+ 32 — W =0. (5.3)
The final solution is
. . 2
= —"9— —F/—,
Ge
iy = — G + —— 5.4
d2 = —g. + 7 (5.4)

If point 2 happens to be at the origin, the bunch will be unstable no matter how

small it is and will be diverted to point 1 following the separatrices. This occurs when

G.=2""  and =213, (5.5)

12



where Eqs. (5.2) and (5.4) have been used. At this moment, the maximum phase

excursion 1s
gy = 2503, (5.6)

The fixed points §,, g, and §. as well as the separatrix intercepts ¢; and g, are

plotted in Fig. 2 as functions of the normalized frequency .

13



VI. EMITTANCE INCREASE

Below bifurcation, when the initial normalized phase extent of the bunch §; is
larger than |g], it is clear that there will be negligible increase in the longitudinal
bunch emittance, although the bunch shape will be distorted. However, when the
initial normalized phase extent of the bunch § is less than !§|, there will be an
increase. The final normalized phase extent gy is a complicated function of §; and g,
and is illustrated in Table I and Fig. 3.

TABLE 1. Final normalized phase extent of the bunch gy when the initial normalized

phase extent §; < |§1} and the driving frequency is below bifurcation.

95
(a) g2 >0 §i < g2 < |l
(b) §2>0 gi > g2 | 1]
(c) G2=0 g1
(d) G2 <0 gi > |g2] |l
(e) g2 <0 §i < g2] < §e

Above bifurcation, there are no separatrices and therefore §, cannot be defined.
The only way to obtain the correct final phase extent of the bunch is to solve for the
bunch trajectory. This can be accomplished by equating the Hamiltonian to its value
at £§; and solving for the relevant phase extent §. Most of the time, these equations
cannot be solved analytically. Thus, this method is not much different from numerical
tracking. This applies to the situation of below bifurcation as well.

Sometimes the driving frequency has a large spread. From Fig. 3, it is evident

14



that the maximal emittance increase occurs when the initial normalized bunch extent

G = |2} (§2 < 0) and the final normalized bunch extent §; = |§:1|. Therefore
2

m=m+7T, (6.1)
o 2
gi _— gc —_ \/.‘&_ N (6'2)

We can define the fractional increase in amplitude as f = (§r—g)/g:. This definition
is very extreme, in the sense that the size of a bunch is measured by its extent rather

than the rms of its particle distribution. Using Eqgs. (6.1) and (6.2), we have

4
e — 6.3
ggjz_ 9 (6.3)

Substituting back into Eq. (6.2), one obtains

i

,.

gy = (6.4)

173
9 i)
(2+7
which gives the tolerance condition for a certain fractional emittance increase. For
example, if the emittance increase has to be less than 50% (or amplitude increase
f < V1.5 — 1 =0.225), one requires

. _ G

> 6.58 , (6.5)

Or the driving amplitude must satisfy

1/ g )3
“<4(&m ’ (6.6)

where g¢; is the initial amplitude or initial phase extent of the bunch recovered from

the normalized initial amplitude g;.
Sometimes given a driving amplitude @ and an initial bunch phase extent g¢;, one
wants to compute the emittance increase. We can first construct the normalized

initial amplitude ¢;. From Eq. (5.2) or



PP —gglt-2=0, (6.7)

§17% can be solved in terms of §; in exactly the same way as given by Eq. (4.16). With

Eq. {(6.7), the fraction amplitude increase in Eq. (6.3) can also be written as

4
f=Zp (6.8)
Yo' G
The final result is
( 2v3 . n
—— Gg; < 9
fgf’/z cosh g ’
f= (6.9)
2+/3 . 3
Y gi >
f}f/‘z cos %
where
tanh™1y/1 — (%—‘)3 g <3
£ = (6.10)
tan~! (-‘.13-)3 -1 & >3
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VII. GROUND MOTION AT SSC

In the collision mode at 20 TeV, the synchrotron {requency of the SSC collider
rings is wy /27 ~ 4.5 Hz. However, ground vibrations usually have an appreciable
intensity up to ~ 10 Hz. Therefore, ground motion may have an important impact
on the longitudinal phase space.

A horizontal displacement of a quadrupole by A leads to an angular bending of the
beam by 6 = %, [y being the focal length of the quadrupole. The driving amplitude

is therefore, according to Eq. (2.6),

hDA
a = .
Vsocfz

(7.1)

A quadrupole at the arc has length ¢ = 5.2 m and field gradient B = 205 T/m.
The beam rigidity is Bp = 66712.8 T-m, giving f, = 62.5 m. The ring has a circum-
ferential length of C' = 87.12 km, rf harmonic A = 104544, and average dispersion
(D) = 1.31 m. The designed half bunch length is v/6c = 0.175 rf rad.

The two sources of ground motion which are of high intensity and sinusoidal
structure are a quarry blast 9 miles away and a train crossing 20 m above the tunnel.
There had been measurements [3] at tunnel depth. The horizontal ground moetion
for quarry blast can be summarized by infegrated displacements over frequency of
0.143 pum near 1 Hz and 0.108m near 3 Hz. The spectrum at 1 Hz is sharp, but
that at 3 Hz is rather broad. The quarry blast, being far away, will affect all the
1600 quadrupoles randomly. The effect of the train crossing can also be described by
horizontal integrated displacements of 0.055 pm near 3 Hz and 0.058um near 7 Hz,
and it affects only about 10 neighboring quadrupoles. Again the spectrum is rather

broad.

17



For the quarry blast, we take the ground motion near 3 Hz and obtain a
driving amplitude of ¢ = 9.34 x 107®. The normalized initial phase extent is
§; = 0.175/(4a)'/® = 2.43. Substituting into Eq. (6.9) gives an emittance increase
of 253%. For the train crossing, we take the ground motion near 7 Hz and obtain
a driving amplitude of @ = 1.19 x 107%, which gives an emittance increase of 82%.
On the other hand, according to Eq. (6.6), the tolerance of 50% emittance increase

is having a driving amplitude a« < 4.71 x 10~°.
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VIII. CURRENT RIPPLES

The power source always has a 60-cycle ripple that will perturb the dipole field.
On the other hand, the synchrotron frequency fi of a machine may ramp through
60 Hz. The phase space may therefore be affected.

Unfortunately, Eqs. {6.6) and (6.9) cannot be used to compute the tolerance and
fractional emittance increase, the reason being that the synchrotron frequency 1s in-
creasing during the passage of 60 Hz. The emittance increase depends very critically
on how fast the synchrotron frequency is changing and the initial positions of the
bunch particles. If the synchrotron frequency changes wery rapidly, the bunch par-
ticles will not be able to follow the island structure, and therefore the emittance
increase will be minimal.

On the other extreme, the synchrotron frequency can change so slowly that the
beam particles follow the islands exactly. When the synchrotron frequency is below
the driving frequency, there is no island inside the rf bucket, and there is only one
stable fixed point a which is close to the origin but on the right side. As the syn-
chrotron frequency increases, this stable fixed point goes more negative and reaches
Ga = —2 at bifurcation frequency. The bunch or some of its particles will be oscil-
lating around this fixed point and trapped inside this outer island. As synchrotron
frequency increases further, this fixed point moves farther and farther away from the
origin of the phase space and reaches the boundary of the rf bucket eventually. So
the bunch will also reach the boundary of the rf bucket and beam loss will occur. The
change of island structure will follow the sketches in Fig. 3 in the order of increasing
& from [(a) to (e)]. A simulation of this situation was performed with a perturbation

having a driving amplitude of @ = 0.01 at a tune of v, = 0.01. The synchrotron

19



tune was varied linearly from v, = 0.005 to 0.035 at a rate of Argp = 3.0 x 1072
per turn. Figure 4(a) shows the result of tracking a single particle in the normalized
longitudinal phase space as a v '-map. The particle started out at normalized phase
gi = 1.5 and zero momentum offset. We see that the particle was trapped in the outer
island and followed it to the boundary of the rf bucket.

In between these two extremes, the bunch emittance will usually be changed. A
situation is shown in Fig. 4(b), where everything is the same as Fig. 4(a), with the
only exception that the synchrotron tune was ramped much faster at the rate of
Avyg = 3.0 x 10~7 per turn. It is obvious that the particle did not follow the outer
island. It fell into the inner island oscillating around the stable fixed point b. In fact,
the final normalized phase shrank to gy ~ 0.5. This does not mean that the bunch
area decreases. The final normalized phase of a particle may become larger if it starts
from a different g;.

Since vy x (f|n|/E from Eq. (2.3), we have

Avso__An A*y_ﬂ_{[? 1]

Vsp B 27] 27 B 27

o (8.1)
where v is the Lorentz-transformation factor and At is the time for the synchrotron
tune to change by Awy. For RHIC, the synchroton frequency passes through 60 Hz
when v = 17.5 and ¥ = 1.6 s7!. The transition gamma is v, = 23.6. We have
Avg/vso = —0.25At, implying that f, changes by 12.5% in % sec or in 30 synchrotron
periods. The circumferential length of the RHIC ring is €' = 3833.84. Thus v, is
changing at the rate of 2.45 x 107 per turn in the vicinity of fo = 60 Hz (or
veo = 7.67 x 107%).

Let ¢ be the fractional level of the 60 Hz ripples. This leads to a deflection of the

beam by

20



f=—"=9r¢, (8.2)

for all the dipoles, where B is the peak value of the ripple magnetic field and ¢ is the

total length of all the dipoles. The rf phase difference per turn is

AC  4x?hDe
c - C

Ap =27 = 3.52¢ , (8.3)

where the rf harmonic 2 = 342 and the dispersion at the dipole D ~ 1 m have been

used. The driving amplitude at synchrotron frequency f,o = 60 Hz is

a= Se _ T3le . (8.4)

2wy

The half bunch length at RHIC is expected to be 0.805 tf rad. Therefore, at ripple
level ¢ = 107°, the driving amplitude is @ = 7.31 x 10~* and the initial normalized
phase extent of the bunch is §; = 5.63. A simulation was performed ramping from
vso = 1.0 x 107* to 2.5 x 1073, The results show that particles from different parts
of the bunch behaved differently. However, the normalized phase extent of the bunch
increased only negligibly to gy ~ 5.73 or 4% for the emittance increase. If the ripple
level becomes € = 107%, the emittance increase becomes 26%.

However, when the ripple level is as high as € = 5 x 107°, the situation is com-
pletely different. We now have a = 2.92 x 1072 and initial normalized phase extent
of the bunch ¢ = 1.52. Similations show that particles having §; less than 1.49
were trapped inside the outer island and were driven out to the boundary of the rf
bucket. Therefore, to avoid appreciable emittance increase the ripple level must be
well controlled and/or the ramping rate must be made faster.

Near the end of a ramping cycle, the synchrotron frequency will fall after the rf

voltage has reached its maximum. There is also a possibility that the synchrotron
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frequency will fall through a driving frequency. This change is usually slow. We can
follow the sketches in Fig. 3 in the order of decreasing 2 [from (e) to (a)]. At first
the extent of the separatrices is very big, so that the bunch is completely inside the
inner island. As th‘e synchrotron frequency decreases (& decreases), intercept 2 of the
separatrices shrinks until it cuts into the left side of the bunch. Particles that have
phases more negative than g, will travel close to the separatrix reaching the other
intercept 1. As the island structure continues to shrink as the synchrotron frequency
decreases further, particles near intercept 1 will be left outside the island system.
The increase will therefore be from ¢ = |§:1]| to §y = |g2f, so that Egs. (6.9) can be
applied. However, one should remember that the island system is shrinking all the
time. For example, particles leaving intercept 2 at some time will reach intercept 1
at a later time. Therefore, the actual increase should be less than that given by
Eq. (6.9). As an illustration, a simulation having the same driving force of Fig. 4 was
performed with synchrotron frequency decreasing from vy = 0.035 to 0.005 in steps
of Av,e = —3.0 x 107 per turn. Figure 5(a) shows the tracking of a particle starting
with normalized phase § = 1.5. The final normalized phase was §; = 3.2, leading
to a fractional phase increase of 1.1, whereas Eq. (6.9) gives 1.6. The ramping rate
was next increased to Avy = —3.0 x 1077 per turn. Figure 5(b) shows that the final
normalized phase was only §; = 1.8.

In our formulation of the theory in Sec. II, the driving amplitude a is defined in
Eq. (2.6) with a factor of v for the sake of convenience. Since the driving amplitude is
assumed to be time independent, this v, in the perturbative part of the Hamiltonian
of Eq. {2.7) should not be varied even when the synchrotron frequency is changing.

Therefore, strictly speaking, our analysis cannot be applied here. However, we learn
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from our simulations that the illustrations shown in Figs. 4 and 5 will not be changed
by very much even if this precaution has been taken. Also the discussion in Sec. II
is inside a stationery bucket. During the ramping of an accelerator, the bucket will
be moving and smaller. However, our tracking results still hold qualitatively. For
example, if the particle is trapped inside the outer island and moves with it to the
boundary of the rf bucket as indicated in Fig. 4(a), this should happen in a moving

bucket as well.
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IX. CONCLUSION

We studied the particle motion in the longitudinal phase under the influence of the
nonlinear rf force and a sinusoidal perturbation that has a driving frequency close to
the synchrotron frequency. The phase space is divided up into resonant islands. The
most important one is the first-order resonance, which had been analysed in detail.
Beam particle motion will follow the trajectories inside the islands, which leads to an
increase in the longitudinal emittance. This effect was applied to the ground motion
perturbation on the quadrupoles of the SSC collider ring, when the frequency of the
ground wave is close to the synchrotron frequency of the ring. We also discussed the
effect of the 60 cycle current ripples in the dipoles of an accelerator ring, when the
synchrotron frequency is ramped through 60 Hz. We discovered that the emittance
increase depends very critically on the rate at which the synchrotron frequency is
ramped and the initial size of the bunch. Although the more exact effects have to
come from numerical simulations, however, the analytic treatment given in this paper

will be found helpful in their interpretation.
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